Kemistry chemoinformatics

The Cactvs Cheminformatics
TOOIkit in the P){thon Age Wolf-D. Ihlenfeldt, Konigstein, Germany

-
The Cactvs Toolkit and the Interface -
Language Conundrum Shared mutex-protected?bj t and extension module store
Cactvs is a general-purpose chemical information processing toolkit A 4 4
with an extensive set of features. It processes structure, reaction, table 4 Isolated Thredd g g Isglated Property

Isolated Property
Slave Tcl Interpreters

and network data. It can read and write over a hundred structure,
reaction, table and network data formats, talk to many databases, and
has extensive support for Internet-based information resources and
standards. It also computes a comprehensive suite of structure and

Property Slave [Tcl
Interpreters

Python
Sub-Interpreters

reaction property data — and does this all in distributed or multi- Y

threaded fashion if desired. It is still the only toolkit which solves all 4 > 4

(pretty simple) test problems posted on the Chemistry Toolkit Rosetta Spawned Thread Tcl Primary Tcl Primary Python
Wiki (http://ctr.wikia.com/wiki/Chemistry Toolkit Rosetta Wiki). Interpreters Interpreter Interpreter

The toolkit is designhed for rapid solution development by scripting. Its
original interface language is Tcl - a capable but not very well known
and slightly dated language which nevertheless provides multi-
threading features and multi-interpreter insulation far beyond what is
possible in, for example, Python.

Python Application

Tcl Application Script Script

Still, Python has definitely become the accepted standard for
cheminformatics and bioinformatics data processing. Most competing = . .
toolkits have a Python interface, or are even loadable as a module into Design Complications

a generic Python interpreter.
Objects (structure, reactions, tables, networks, files, datasets) are

For these reasons, providing a Python interface to the Cactvs toolkit shared between interpreters by default. Any change performed in
has become essential. This has how been implemented. one language environment is automatically mirrored in the other.
Quite a number of components of the toolkit are itself scripted in Tcl — One primary interpreter and potentially multiple additional Tcl thread
for example encapsulated standard property computation modules. Interpreters may operate on these objects simultaneously.
Legacy components need to remain usable — whether a module is
Implemented in Tcl or Python must be irrelevant regardless in which The active primary interpreter may invoke its counterpart of the
language the application script is written. This leads to a unigue multi- other language for specific tasks. It is even possible to have
language approach — the toolkit now interfaces to both languages application scripts consisting of a Tcl and a Python part, for example
simultaneously, in a common executable, with bridges between them. for re-use of in-house procedure libraries.
@f zmol_b.mol [modified] - Symyx Draw 4.0 I&- 1&% &- [':' | (S |t S
File Edit Options Object Chemistry Window Help
o = X 9] Anal . - B /U
L ESE Example Mini Project in Tcl and Python
BE-O000A~=Q0G
ACCLDra: /f ff"ﬁ ffﬁ’fﬁf)* .ﬁ“ o 'i"‘-. / .r"f f:'.-"'-:::;r -".-‘-'-"I::;r r’/[f /f& ' - - 13 . 7 9
sty [emawort. oA VIof I gey—T— q b I Does your toolkit of choice have a “Molfile Reader” — or a MOLFILE READER®
7 0 (X~ N
=y - -l The task: Process a set of files with multiple nested, overlapping SGroups of various
7-79: ;3 g . . .] - types, with incomplete atom sets, superatoms and badly aligned annotations. Split
222 Y the files into individual components by datagroup annotation labels and write a
7_79: A . . ! Fe] [} . S - multi-record SDF, preserving the proper subset of SGroups, annotations and all the
v [N i " o T S | other M xxx stuff in the output. It seems the FDA needs to do this regularly.
M STY : e - . .
et B | In both language variants, this is a simple exercise for the toolkit:
M saL || T+ vI
Mo SDE i : i : filter create datagroup property G TYPE value datagroup operator =
m gg_:_ 1|:||:|?f'l-:-"'| 1,1g'|:| Current Tool: Lasso Tool I Set fhuut [”lulfile Upe” “Split_sdf” W]
M SDD L2 9.3481 -6.1856 DA -ALL 1 5 set eh [molfile read “xmol_6-mol”]
M SED 2 A foreach g [ens groups $eh datagroup] {
MosAL 3 2 2 1 set ehg [group dup $eh $g]
M SDI 3 4 10.6681 -5.7256 10.6681 -3.8456 Ifile write SFhout $eh
M SDI 3 4 13.5081 -3.7356 13.5081 -5.7656 e g
M SDT 4 FDAREG_SGROUP F ens delete $ehg
M SDD 4 13.8081 -5.6856 DA ALL 1) 1
m gii ‘5‘53 — molfile close $fhout
—SPA—ft—1—> ens delete $eh
M SDI 5 4 [.2581 -5.5156 [.2581 -4 _2656
M SDI 5 4 8.4481 -4.2656 8.4481 -5.5156 f=Filter("datagroup”,property="G_TYPE" ,value="datagroup” ,operator="=")
M gMT 232 with Molfile("split.sdf","w") as fhout:
m sék 6 1 j > with Molfile_.Read("xmol 6.mol") as eh:
M SDI 6 4 5.3481 -5.4156 5.3481 -4.1656 for g In eh.groups(f):
M SDI 6 4 6.6581 -4.1656 6.6581 -5.4156 with g.dup() as ehg:
m SMT 6 2 fhout.write(ehg)

Availability FAQ Supporters yERTEX

V3.426, which includes Python = Python 2 or 3? 3.4.1. The interface relies on new features only introduced in 3.4.
Interfaces to almost all the objects and We gratefully acknowledge
functions of the Tcl toolkit (exception: = Where do | get this brand-new Python version? No need. The toolkit includes a complete financial support by Vertex
concurrent multi-interpreter multi- Python installation. It coexists with other installed Python versions. Pharmaceuticals for this
threaded script execution - generally project. All improvements
unsupported in Python) is available for = Can | load other Python-linked chemistry toolkits into this system? Yes, in principle. But implemented with their aid
public download from remember, its Python3. You cannot load Python2 compiled modules. are available in the free
http://www.xemistry.com/academic. academic releases.

* |s it Open Source? No. It is free software for academia, though. You may freely redistribute

anything you develop for it. Scripting and module APIs are public and royalty-free.

