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Cactvs is a general-purpose chemical information processing toolkit A 4 4
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and network data. It can read and write over a hundred structure,
reaction, table and network data formats, talk to many databases, and
has extensive support for Internet-based information resources and
standards. It also computes a comprehensive suite of structure and
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reaction property data — and does this all in distributed or multi- Y

threaded fashion if desired. It is still the only toolkit which solves all 4 > 4

(pretty simple) test problems posted on the Chemistry Toolkit Rosetta Spawned Thread Tcl Primary Tcl Primary Python
Wiki (http://ctr.wikia.com/wiki/Chemistry Toolkit Rosetta Wiki). Interpreters Interpreter Interpreter

The toolkit is designhed for rapid solution development by scripting. Its
original interface language is Tcl - a capable but not very well known
and slightly dated language which nevertheless provides multi-
threading features and multi-interpreter insulation far beyond what is
possible in, for example, Python.
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Still, Python has definitely become the accepted standard for
cheminformatics and bioinformatics data processing. Most competing = . .
toolkits have a Python interface, or are even loadable as a module into Design Complications

a generic Python interpreter.
Objects (structure, reactions, tables, networks, files, datasets) are

For these reasons, providing a Python interface to the Cactvs toolkit shared between interpreters by default. Any change performed in
has become essential. This has how been implemented. one language environment is automatically mirrored in the other.
Quite a number of components of the toolkit are itself scripted in Tcl — One primary interpreter and potentially multiple additional Tcl thread
for example encapsulated standard property computation modules. Interpreters may operate on these objects simultaneously.
Legacy components need to remain usable — whether a module is
Implemented in Tcl or Python must be irrelevant regardless in which The active primary interpreter may invoke its counterpart of the
language the application script is written. This leads to a unigue multi- other language for specific tasks. It is even possible to have
language approach — the toolkit now interfaces to both languages application scripts consisting of a Tcl and a Python part, for example
simultaneously, in a common executable, with bridges between them. for re-use of in-house procedure libraries.
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V3.426, which includes Python = Python 2 or 3? 3.4.1. The interface relies on new features only introduced in 3.4.
Interfaces to almost all the objects and We gratefully acknowledge
functions of the Tcl toolkit (exception: = Where do | get this brand-new Python version? No need. The toolkit includes a complete financial support by Vertex
concurrent multi-interpreter multi- Python installation. It coexists with other installed Python versions. Pharmaceuticals for this
threaded script execution - generally project. All improvements
unsupported in Python) is available for = Can | load other Python-linked chemistry toolkits into this system? Yes, in principle. But implemented with their aid
public download from remember, its Python3. You cannot load Python2 compiled modules. are available in the free
http://www.xemistry.com/academic. academic releases.

* |s it Open Source? No. It is free software for academia, though. You may freely redistribute

anything you develop for it. Scripting and module APIs are public and royalty-free.




